CÔNG THỨC CẤP SỐ NHÂN

ĐỊNH NGHĨA VỀ CẤP SỐ NHÂN

Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn). Trong đó kể từ số hạng thứ 2, mỗi số hạn đều là tích của số hạng đứng ngay trước nó với số không đổi q. Số q gọi là công bội của cấp số nhân

Công bội q

Gọi q là công bội của cấp số nhân ta có công thức công bội

công thức công bôi

Ví dụ cho cấp số nhân (un) có u1 = 2 , u2 = 4. Tính công bội q

Áp dụng công thức công bội q ta có

ví dụ về công bội

Nếu (un) là cấp số nhân với công bội q, ta có un +1 = un.q, với mọi số nguyên dương n.

Tính chất của cấp số nhân

Định lí 1: Nếu (un) là một cấp số nhân thì kể từ số hạng thứ hai, bình phương của mỗi số hạng (trừ số hạng cuối đối với cấp số nhân hữu hạn) bằng tích của hai số hạng đứng kề nó trong dãy, tức là

u2k = uk-1 . uk+1

Ví dụ: Cho cấp số nhân (un) với công bôi q > 0. Biết u1 = 1, u3 = 3. Hãy tìm u4

Giải:

Theo đính lý 1 ta có

u22 = u1.u3

u32 = u2.u4

Từ (1) do u2 > 0 ( vì u1 = 1 >0 và q > 0)

ví dụ về công bội

  Từ đây và (2) ta được

ví dụ về công bội

SỐ HẠNG CỦA CẤP SỐ NHÂN

Số hạng tổng quát của cấp số nhân

Nếu một cấp số nhân có số hạng đầu (un) và công bội q thì số hạng tổng quát (un) sẽ được tính bởi công thức:

un = u1. Qn-1

Ví dụ: Cho cấp số nhân un với u1 = 3, q = -1/2. Tìm u7

Giải:

un = u1.qn-1 suy ra u7 = u1.q7-1 = 3 . (-1/2)6 = (3/64)

Tìm tổng n số hạng đầu tiên của một cấp số nhân

Giả sử có cấp số nhân (un) với công bội q. Với mỗi số nguyên dương n gọi sn là tổng n số hạng đầu tiên của nó. Ta co công thức sau

tổng n số hạng đầu tiên

Nếu q = 1 thì cấp số nhân là sn = n.u1

Tổng của cấp số nhân lùi vô hạn

Cho cấp số nhân lùi vô hạn (un) có công bội là q. Khi đó ta có tổng của cấp số nhân lùi vô hạn s bằng:

tổng của cấp số nhân lùi vô hạn

Ví dụ minh họa

Cho ba số a, b, c lập thành một cấp số nhân. Chứng minh rằng (a2 + b2) . (b2 + c2) = (ab + bc)2

Ba số a, b, c lập thành một cấp số nhân ta được ac = b2

Khi: (a2 + b2) . (b2 + c2) = a2b2 + a2c2 + b4 + b2c2 = a2b2 + acb2 + b2c2 = a2b2 + 2ab2c + b2c2 = (ab + bc)2

Như vậy (a2 + b2) . (b2 + c2) = (ab + bc)2

Ví dụ 2: Tính tổng cấp số nhân  S = 2 + 6 + 18 + … + 13122

Giải:

Xét cấp số nhân (un) có u1 = 2 và công bội q = 3

Ta có :

13122 = un = unqn-1 = 2.3n-1 => n = 9

Như vậy suy ra

tổng của cấp số nhân lùi vô hạn ví dụ

Ví dụ 3: Tìm x để ba số x – 2, x – 4, x + 2 lập thành một cấp số nhân

Giải:

Để 3 x – 2, x – 4, x + 2 lập thành một cấp số nhân điều kiện sẽ là

( x – 4 )2 = ( x – 2 ) ( x +2 ) => 8x = 20 => x = 5/2

Vậy x = 5/2 là số cần tìm để ba số x – 2, x – 4, x + 2 lập thành một cấp số nhân

BÀI TẬP RÈN LUYỆN VỀ CẤP SỐ NHÂN

Bài tập 1: Chứng minh các dãy số sau là các cấp số nhân

bài tập cấp số nhân

Giải:

Xét dãy số

bài tập cấp số nhân

Lập tỉ số ( un+1 / un ) ta được :

bài tập cấp số nhân

Suy ra dãy số trên là cấp số nhân có công bội q = 2

Xét dãy số

bài tập cấp số nhân

Lập tỉ số ( un+1 / un ) ta được :

bài tập cấp số nhân

Suy ra (un) là cấp số nhân có công bội q = ½

Xét dãy số

bài tập cấp số nhân

Lập tỉ số ( un+1 / un ) ta được :

bài tập cấp số nhân

Suy ra (un) là cấp số nhân có công bội q =  -½

Bài tập 2: Cho cấp số nhân (un) với công bội q

a) Biết u1 = 2, u6 = 486. Tìm q

b) Biết q = 2/3, u4 = 8/21. Tìm u1

c) Biết u1 = 3, q = -2. Hỏi số 192 là số hạng thứ mấy ?

Giải:

Áp dụng công thức un = u1. qn-1

a) Theo công thức un = u1. qn-1 ta có: u6 = u1.q5 => q5 = u6 / u1 = 486 / 2 = 243 => q = 3

b) Theo công thức un = u1. qn-1 ta có: u4 = u1.q3 => u1 = u4 / q3 = 8/21 . (3/2)2 = 9/7

c) Theo công thức un = u1. qn-1 ta có: 12 = 3. (-2)n-1 => (-2)n-1 = 64 => n-1 = 6 => n = 7 như vậy 192 chính là số hạng thứ 7

Bài tập 3: Tìm các số hạng của cấp số nhân (un) có 5 số hạng biết:

a) u3 = 3 và u5 = 27

b) u4– u2 = 25 và u3 – u1 = 50

Giải:

Áp dụng công thức un = u1. qn-1

a) Theo công thức un = u1. qn-1 ta có

u3 = u1.q2 => 3 =  u1.q2  (1)

u5 = u1.q4 => 27 =  u1.q4 (2)

Từ (1) và (2) suy ra : q2 = (u1.q4) / (u1.q2) = 9 => q = 3 hoặc -3

Với q = 3 ta được u1 = 1/3, ta có cấp số nhân là 1/3, 1, 3, 9, 27

Với q = -3 ta được u1 = 1/3, ta có cấp số nhân là 1/3, -1, 3, -9, 27

b) Theo bài cho ta có :

bài tập cấp số nhân

Thay (2) vào (1) ta được 50.q = 25 => q = ½

Từ (2) suy ra u1 = 50/(q2 – 1) = 50 / (1/4 – 1) =  (-200 / 3)

Ta có cấp số nhân :

bài tập cấp số nhân

Bài tập 4 : Tìm cấp số nhân có sáu số hạng, biết rằng tổng của 5 số hạng đầu là 31 và tổng của 5 số hạng sau là 62

Giải :

Tổng của 5 số hạng đầu là 31 như vậy

u1 + u2 + u3 + u4 + u5 = 31

=> u1q + u2q + u3q + u4q + u5q =31q

=> u2 + u3 + u4 =+ u5 + u6 = 31q (1)

Tổng của 5 số hạng sau là 62 như vậy

u2 + u3 + u4 =+ u5 + u6 = 62 (2)

Từ (1) và (2) ta suy ra 31q = 62 => q = 2

Vì S5 = 31 = u1(1-25) / (1-2) => u1 = 1

Vậy ta được cấp số nhân : 1, 2, 4, 8, 16, 32

Bài tập 5: Tỉ lệ tăng dân số của tỉnh x là 1,4%. Biết rằng số daancuar tỉnh hiện nay là 1,8 triệu người, hỏi với mức tăng lương như vậy thì sau 5 năm, 10 năm số dân của tỉnh đó là bao nhiêu ?

Giải:

Gọi số dân của tỉnh đó là N

Sau một năm số dân tăng là 1,4%N

Vậy số dân của tỉnh đó vào năm sau là n + 1,4%N = 101,4%N

Số dân tỉnh đó sau mỗi năm lập thnahf một cấp số nhân như sau

N ; (101,4/100)N ; (101,4/100)2N ; …

Giải sử N = 1,8 triệu người thì sau 5 năm số dân của tỉnh là:

(101,4/100)5. 1,8 = 1,9 (triệu dân)

Và sau 10 năm sẽ là

(101,4/100)10. 1,8 = 2,1 (triệu dân)

Bài tập 6: Cho cấp số nhân (un)

bài tập cấp số nhân

a) Viết năm số hạng đầu của cấp số;

b) Tính tổng 10 số hạng đầu của cấp số;

c) Số 2/6561 là số hạng thứ bao nhiêu của cấp số ?

Giải:

Gọi q là công bội của cấp số. Theo giả thiết ta có:

bài tập cấp số nhân

a) Năm số hạng đầu của cấp số là:

u1=2,u2=2/3,u3=2/9,u4=2/27,u5=2/81

b) Tổng 10 số hạng đầu của cấp số

bài tập cấp số nhân

c) ta có:

bài tập cấp số nhân

Bài tập 7: Cho cấp số nhân (un) có các số hạng khác không, tìm u1 biết:

bài tập cấp số nhân

Giải:

bài tập cấp số nhân

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *